Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Arthritis Res Ther ; 26(1): 73, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509602

ABSTRACT

BACKGROUND: Pain from osteoarthritis (OA) is one of the top causes of disability worldwide, but effective treatment is lacking. Nociceptive factors are released by activated synovial macrophages in OA, but depletion of synovial macrophages paradoxically worsens inflammation and tissue damage in previous studies. Rather than depleting macrophages, we hypothesized that inhibiting macrophage activation may improve pain without increasing tissue damage. We aimed to identify key mechanisms mediating synovial macrophage activation and test the role of STAT signaling in macrophages on pain outcomes in experimental knee OA. METHODS: We induced experimental knee OA in rats via knee destabilization surgery, and performed RNA sequencing analysis on sorted synovial tissue macrophages to identify macrophage activation mechanisms. Liposomes laden with STAT1 or STAT6 inhibitors, vehicle (control), or clodronate (depletion control) were delivered selectively to synovial macrophages via serial intra-articular injections up to 12 weeks after OA induction. Treatment effects on knee and hindpaw mechanical pain sensitivity were measured during OA development, along with synovitis, cartilage damage, and synovial macrophage infiltration using histopathology and immunofluorescence. Lastly, crosstalk between drug-treated synovial tissue and articular chondrocytes was assessed in co-culture. RESULTS: The majority of pathways identified by transcriptomic analyses in OA synovial macrophages involve STAT signaling. As expected, macrophage depletion reduced pain, but increased synovial tissue fibrosis and vascularization. In contrast, STAT6 inhibition in macrophages led to marked, sustained improvements in mechanical pain sensitivity and synovial inflammation without worsening synovial or cartilage pathology. During co-culture, STAT6 inhibitor-treated synovial tissue had minimal effects on healthy chondrocyte gene expression, whereas STAT1 inhibitor-treated synovium induced changes in numerous cartilage turnover-related genes. CONCLUSION: These results suggest that STAT signaling is a major mediator of synovial macrophage activation in experimental knee OA. STAT6 may be a key mechanism mediating the release of nociceptive factors from macrophages and the development of mechanical pain sensitivity. Whereas therapeutic depletion of macrophages paradoxically increases inflammation and fibrosis, blocking STAT6-mediated synovial macrophage activation may be a novel strategy for OA-pain management without accelerating tissue damage.


Subject(s)
Osteoarthritis, Knee , STAT6 Transcription Factor , Animals , Rats , Fibrosis , Inflammation/pathology , Macrophage Activation , Osteoarthritis, Knee/pathology , Pain/pathology , Synovial Membrane/pathology , STAT6 Transcription Factor/metabolism
2.
J Pharmacol Exp Ther ; 387(1): 66-77, 2023 10.
Article in English | MEDLINE | ID: mdl-37442619

ABSTRACT

Glioblastoma is the most common and deadly primary brain tumor in adults. All glioblastoma patients receiving standard-of-care surgery-radiotherapy-chemotherapy (i.e., temozolomide (TMZ)) recur, with an average survival time of only 15 months. New approaches to the treatment of glioblastoma, including immune checkpoint blockade and oncolytic viruses, offer the possibility of improving glioblastoma outcomes and have as such been under intense study. Unfortunately, these treatment modalities have thus far failed to achieve approval. Recently, in an attempt to bolster efficacy and improve patient outcomes, regimens combining chemotherapy and immune checkpoint inhibitors have been tested in trials. Unfortunately, these efforts have not resulted in significant increases to patient survival. To better understand the various factors impacting treatment outcomes of combined TMZ and immune checkpoint blockade, we developed a systems-level, computational model that describes the interplay between glioblastoma, immune, and stromal cells with this combination treatment. Initializing our model to spatial resection patient samples labeled using imaging mass cytometry, our model's predictions show how the localization of glioblastoma cells, influence therapeutic success. We further validated these predictions in samples of brain metastases from patients given they generally respond better to checkpoint blockade compared with primary glioblastoma. Ultimately, our model provides novel insights into the mechanisms of therapeutic success of immune checkpoint inhibitors in brain tumors and delineates strategies to translate combination immunotherapy regimens more effectively into the clinic. SIGNIFICANCE STATEMENT: Extending survival times for glioblastoma patients remains a critical challenge. Although immunotherapies in combination with chemotherapy hold promise, clinical trials have not shown much success. Here, systems models calibrated to and validated against patient samples can improve preclinical and clinical studies by shedding light on the factors distinguishing responses/failures. By initializing our model with imaging mass cytometry visualization of patient samples, we elucidate how factors such as localization of glioblastoma cells and CD8+ T cell infiltration impact treatment outcomes.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Adult , Humans , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment , Neoplasm Recurrence, Local/drug therapy , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Immunotherapy/methods , Systems Analysis
3.
J Exp Med ; 220(8)2023 08 07.
Article in English | MEDLINE | ID: mdl-37166450

ABSTRACT

Obesity is characterized by chronic systemic inflammation and enhances cancer metastasis and mortality. Obesity promotes breast cancer metastasis to lung in a neutrophil-dependent manner; however, the upstream regulatory mechanisms of this process remain unknown. Here, we show that obesity-induced monocytes underlie neutrophil activation and breast cancer lung metastasis. Using mass cytometry, obesity favors the expansion of myeloid lineages while restricting lymphoid cells within the peripheral blood. RNA sequencing and flow cytometry revealed that obesity-associated monocytes resemble professional antigen-presenting cells due to a shift in their development and exhibit enhanced MHCII expression and CXCL2 production. Monocyte induction of the CXCL2-CXCR2 axis underlies neutrophil activation and release of neutrophil extracellular traps to promote metastasis, and enhancement of this signaling axis is observed in lung metastases from obese cancer patients. Our findings provide mechanistic insight into the relationship between obesity and cancer by broadening our understanding of the interactive role that myeloid cells play in this process.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Humans , Female , Monocytes/pathology , Lung Neoplasms/pathology , Obesity/metabolism , Myeloid Cells/metabolism , Breast Neoplasms/pathology , Inflammation
4.
J Immunother Cancer ; 11(2)2023 02.
Article in English | MEDLINE | ID: mdl-36725085

ABSTRACT

BACKGROUND: Immunotherapy has revolutionized clinical outcomes for patients suffering from lung cancer, yet relatively few patients sustain long-term durable responses. Recent studies have demonstrated that the tumor immune microenvironment fosters tumorous heterogeneity and mediates both disease progression and response to immune checkpoint inhibitors (ICI). As such, there is an unmet need to elucidate the spatially defined single-cell landscape of the lung cancer microenvironment to understand the mechanisms of disease progression and identify biomarkers of response to ICI. METHODS: Here, in this study, we applied imaging mass cytometry to characterize the tumor and immunological landscape of immunotherapy response in non-small cell lung cancer by describing activated cell states, cellular interactions and neighborhoods associated with improved efficacy. We functionally validated our findings using preclinical mouse models of cancer treated with anti-programmed cell death protein-1 (PD-1) immune checkpoint blockade. RESULTS: We resolved 114,524 single cells in 27 patients treated with ICI, enabling spatial resolution of immune lineages and activation states with distinct clinical outcomes. We demonstrated that CXCL13 expression is associated with ICI efficacy in patients, and that recombinant CXCL13 potentiates anti-PD-1 response in vivo in association with increased antigen experienced T cell subsets and reduced CCR2+ monocytes. DISCUSSION: Our results provide a high-resolution molecular resource and illustrate the importance of major immune lineages as well as their functional substates in understanding the role of the tumor immune microenvironment in response to ICIs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Chemokine CXCL13 , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Tumor Microenvironment , Humans
5.
Nature ; 614(7948): 548-554, 2023 02.
Article in English | MEDLINE | ID: mdl-36725934

ABSTRACT

Single-cell technologies have revealed the complexity of the tumour immune microenvironment with unparalleled resolution1-9. Most clinical strategies rely on histopathological stratification of tumour subtypes, yet the spatial context of single-cell phenotypes within these stratified subgroups is poorly understood. Here we apply imaging mass cytometry to characterize the tumour and immunological landscape of samples from 416 patients with lung adenocarcinoma across five histological patterns. We resolve more than 1.6 million cells, enabling spatial analysis of immune lineages and activation states with distinct clinical correlates, including survival. Using deep learning, we can predict with high accuracy those patients who will progress after surgery using a single 1-mm2 tumour core, which could be informative for clinical management following surgical resection. Our dataset represents a valuable resource for the non-small cell lung cancer research community and exemplifies the utility of spatial resolution within single-cell analyses. This study also highlights how artificial intelligence can improve our understanding of microenvironmental features that underlie cancer progression and may influence future clinical practice.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/surgery , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Lung/pathology , Lung/surgery , Lung Neoplasms/diagnosis , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Tumor Microenvironment/immunology , Disease Progression , Deep Learning , Prognosis
6.
Nature ; 614(7948): 555-563, 2023 02.
Article in English | MEDLINE | ID: mdl-36725935

ABSTRACT

Single-cell technologies have enabled the characterization of the tumour microenvironment at unprecedented depth and have revealed vast cellular diversity among tumour cells and their niche. Anti-tumour immunity relies on cell-cell relationships within the tumour microenvironment1,2, yet many single-cell studies lack spatial context and rely on dissociated tissues3. Here we applied imaging mass cytometry to characterize the immunological landscape of 139 high-grade glioma and 46 brain metastasis tumours from patients. Single-cell analysis of more than 1.1 million cells across 389 high-dimensional histopathology images enabled the spatial resolution of immune lineages and activation states, revealing differences in immune landscapes between primary tumours and brain metastases from diverse solid cancers. These analyses revealed cellular neighbourhoods associated with survival in patients with glioblastoma, which we leveraged to identify a unique population of myeloperoxidase (MPO)-positive macrophages associated with long-term survival. Our findings provide insight into the biology of primary and metastatic brain tumours, reinforcing the value of integrating spatial resolution to single-cell datasets to dissect the microenvironmental contexture of cancer.


Subject(s)
Brain Neoplasms , Glioma , Single-Cell Analysis , Tumor Microenvironment , Humans , Brain/immunology , Brain/pathology , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Glioblastoma/immunology , Glioblastoma/pathology , Glioma/immunology , Glioma/pathology , Macrophages/enzymology , Tumor Microenvironment/immunology , Neoplasm Metastasis , Datasets as Topic
7.
Sci Rep ; 12(1): 17367, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253398

ABSTRACT

Synovium is critical for maintaining joint homeostasis and may contribute to mechanobiological responses during joint movement. We investigated mechanobiological responses of whole synovium from patients with late-stage knee osteoarthritis (OA). Synovium samples were collected during total knee arthroplasty and assigned to histopathology or cyclic 10% tensile strain loading, including (1) static (control); (2) low-frequency (0.3 Hz); and iii) high-frequency (1.0 Hz) for 30-min. After 6-h incubation, tissues were bisected for RNA isolation and immunostaining (3-nitrotyrosine; 3-NT). RNA sequencing was analyzed for differentially expressed genes and pathway enrichment. Cytokines and lactate were measured in conditioned media. Compared to controls, low-frequency strain induced enrichment of pathways related to interferon response, Fc-receptor signaling, and cell metabolism. High-frequency strain induced enrichment of pathways related to NOD-like receptor signaling, high metabolic demand, and redox signaling/stress. Metabolic and redox cell stress was confirmed by increased release of lactate into conditioned media and increased 3-NT formation in the synovial lining. Late-stage OA synovial tissue responses to tensile strain include frequency-dependent increases in inflammatory signaling, metabolism, and redox biology. Based on these findings, we speculate that some synovial mechanobiological responses to strain may be beneficial, but OA likely disturbs synovial homeostasis leading to aberrant responses to mechanical stimuli, which requires further validation.


Subject(s)
Osteoarthritis, Knee , Culture Media, Conditioned/metabolism , Cytokines/metabolism , Humans , Interferons/metabolism , Lactates/metabolism , NLR Proteins/metabolism , Osteoarthritis, Knee/pathology , RNA/metabolism , Synovial Membrane/metabolism
8.
Cell Mol Life Sci ; 79(3): 178, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35249128

ABSTRACT

Receptor tyrosine kinases (RTKs) are recognized as targets of precision medicine in human cancer upon their gene amplification or constitutive activation, resulting in increased downstream signal complexity including heterotypic crosstalk with other RTKs. The Met RTK exhibits such reciprocal crosstalk with several members of the human EGFR (HER) family of RTKs when amplified in cancer cells. We show that Met signaling converges on HER3-tyrosine phosphorylation across a panel of seven MET-amplified cancer cell lines and that HER3 is required for cancer cell expansion and oncogenic capacity in vitro and in vivo. Gene expression analysis of HER3-depleted cells identified MPZL3, encoding a single-pass transmembrane protein, as HER3-dependent effector in multiple MET-amplified cancer cell lines. MPZL3 interacts with HER3 and MPZL3 loss phenocopies HER3 loss in MET-amplified cells, while MPZL3 overexpression can partially rescue proliferation upon HER3 depletion. Together, these data support an oncogenic role for a HER3-MPZL3 axis in MET-amplified cancers.


Subject(s)
Membrane Proteins/metabolism , Proto-Oncogene Proteins c-met/metabolism , Receptor, ErbB-3/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice , Mice, Inbred NOD , Microsatellite Instability , Phosphorylation , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-met/genetics , RNA Interference , RNA, Small Interfering/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/genetics , Signal Transduction/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Transplantation, Heterologous
9.
JTO Clin Res Rep ; 2(5): 100169, 2021 May.
Article in English | MEDLINE | ID: mdl-34590020

ABSTRACT

INTRODUCTION: Primary carcinomas of the trachea are rare, with a reported annual incidence of one in a million. We present a case of a previously undescribed polypoid high-grade neuroendocrine carcinoma of the trachea. Resection of the carcinoma revealed only superficial invasion of the mucosa and without evidence of local or distant metastatic disease. Histologically, the tumor had high-grade features with necrosis and a high mitotic index. METHODS: Characterization of this rare neuroendocrine carcinoma of the trachea was performed by immunohistochemistry and whole-genome sequencing. RESULTS: Immunohistochemistry result was positive for neuroendocrine markers, p16 and an elevated Ki-67. Whole-genome sequencing of the lesion was performed and revealed a very unusual and very distinct mutational signature without relationship to other relevant neuroendocrine carcinomas. Neither known driver nor targetable mutations were found by whole-genome sequencing. Analysis of the sequence of numerous viral elements of human papillomavirus-18 suggests that the pathogenesis of the lesion is related to viral integration. The patient developed distal recurrence, which progressed to widespread pulmonary dissemination, presumably through aerogenous spread of disease. CONCLUSIONS: This is the first characterization of this type of tracheal tumor, including genomic findings, pathogenesis, and natural history.

10.
Nat Cancer ; 2(5): 545-562, 2021 05.
Article in English | MEDLINE | ID: mdl-35122017

ABSTRACT

Metastasis is the leading cause of cancer-related deaths, and obesity is associated with increased breast cancer (BC) metastasis. Preclinical studies have shown that obese adipose tissue induces lung neutrophilia associated with enhanced BC metastasis to this site. Here we show that obesity leads to neutrophil-dependent impairment of vascular integrity through loss of endothelial adhesions, enabling cancer cell extravasation into the lung. Mechanistically, neutrophil-produced reactive oxygen species in obese mice increase neutrophil extracellular DNA traps (NETs) and weaken endothelial junctions, facilitating the influx of tumor cells from the peripheral circulation. In vivo treatment with catalase, NET inhibitors or genetic deletion of Nos2 reversed this effect in preclinical models of obesity. Imaging mass cytometry of lung metastasis samples from patients with cancer revealed an enrichment in neutrophils with low catalase levels correlating with elevated body mass index. Our data provide insights into potentially targetable mechanisms that underlie the progression of BC in the obese population.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Animals , Breast Neoplasms/metabolism , Catalase/metabolism , Female , Humans , Lung Neoplasms/metabolism , Mice , Neutrophils/metabolism , Obesity/complications , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...